18 research outputs found

    A usability study of physiological measurement in school using wearable sensors

    Get PDF
    Measuring psychophysiological signals of adolescents using unobtrusive wearable sensors may contribute to understanding the development of emotional disorders. This study investigated the feasibility of measuring high quality physiological data and examined the validity of signal processing in a school setting. Among 86 adolescents, a total of more than 410 h of electrodermal activity (EDA) data were recorded using a wrist-worn sensor with gelled electrodes and over 370 h of heart rate data were recorded using a chest-strap sensor. The results support the feasibility of monitoring physiological signals at school. We describe specific challenges and provide recommendations for signal analysis, including dealing with invalid signals due to loose sensors, and quantization noise that can be caused by limitations in analog-to-digital conversion in wearable devices and be mistaken as physiological responses. Importantly, our results show that using toolboxes for automatic signal preprocessing, decomposition, and artifact detection with default parameters while neglecting differences between devices and measurement contexts yield misleading results. Time courses of students' physiological signals throughout the course of a class were found to be clearer after applying our proposed preprocessing steps

    Friendship stability in adolescence is associated with ventral striatum responses to vicarious rewards

    Get PDF
    An important task for adolescents is to form and maintain friendships. In this three-wave biannual study, we used a longitudinal neuroscience perspective to examine the dynamics of friendship stability. Relative to childhood and adulthood, adolescence is marked by elevated ventral striatum activity when gaining self-serving rewards. Using a sample of participants between the ages of eight and twenty-eight, we tested age-related changes in ventral striatum response to gaining for stable (n = 48) versus unstable best friends (n = 75) (and self). In participants with stable friendships, we observed a quadratic developmental trajectory of ventral striatum responses to winning versus losing rewards for friends, whereas participants with unstable best friends showed no age-related changes. Ventral striatum activity in response to winning versus losing for friends further varied with friendship closeness for participants with unstable friendships. We suggest that these findings may reflect changing social motivati

    Friends and foes: Neural correlates of prosocial decisions with peers in adolescence

    No full text
    Schreuders, E., Smeekens, S., Cillessen, A. H. N., & Güroglu, B.(2019). Neuropsychologia

    Friendship stability in adolescence is associated with ventral striatum responses to vicarious rewards

    No full text
    Schreuders, E., Braams, B. R., Crone, E. A., & Güroglu, B. (2021). Nature Communication

    Friendship stability in adolescence is associated with ventral striatum responses to vicarious rewards

    Get PDF
    An important task for adolescents is to form and maintain friendships. In this three-wave biannual study, we used a longitudinal neuroscience perspective to examine the dynamics of friendship stability. Relative to childhood and adulthood, adolescence is marked by elevated ventral striatum activity when gaining self-serving rewards. Using a sample of participants between the ages of eight and twenty-eight, we tested age-related changes in ventral striatum response to gaining for stable (n = 48) versus unstable best friends (n = 75) (and self). In participants with stable friendships, we observed a quadratic developmental trajectory of ventral striatum responses to winning versus losing rewards for friends, whereas participants with unstable best friends showed no age-related changes. Ventral striatum activity in response to winning versus losing for friends further varied with friendship closeness for participants with unstable friendships. We suggest that these findings may reflect changing social motivations related to formation and maintenance of friendships across adolescence

    Increased Ventromedial Prefrontal Cortex Activity in Adolescence Benefits Prosocial Reinforcement Learning

    No full text
    Learning which of our behaviors benefit others contributes to forming social relationships. An important period for the development of (pro)social behavior is adolescence, which is characterized by transitions in social connections. It is, however, unknown how learning to benefit others develops across adolescence and what the underlying cognitive and neural mechanisms are. In this functional neuroimaging study, we assessed learning for self and others (i.e., prosocial learning) and the concurring neural tracking of prediction errors across adolescence (ages 9–21, N = 74). Participants performed a two-choice probabilistic reinforcement learning task in which outcomes resulted in monetary consequences for themselves, an unknown other, or no one. Participants from all ages were able to learn for themselves and others, but learning for others showed a more protracted developmental trajectory. Prediction errors for self were observed in the ventral striatum and showed no age-related differences. However, prediction error coding for others showed an age-related increase in the ventromedial prefrontal cortex. These results reveal insights into the computational mechanisms of learning for others across adolescence, and highlight that learning for self and others show different age-related patterns
    corecore